VinDr-RibCXR: A Benchmark Dataset for Automatic Segmentation and Labeling of Individual Ribs on Chest X-rays

Research and build a labeling dataset to develop algorithm for segmenting and noting rib arcs. Specifically, after collecting from 245 scans, chest X-ray images were partitioned and labeled with 20 different bone arches. This dataset, then, is the basis for training today’s most advanced deep learning algorithms (such as U-Net, FPN, U-Net++).

Combining a standard dataset and a solid technology platform, a fully built AI model is able to accurately determine the position of the ribs from chest X-ray images. The test shows that the accuracy of the segmentation task reaches 83.4% on the Dice-score coefficient.

This result has important implications for the diagnostic process of some cardiopulmonary diseases as well as surgical intervention. Not only reducing the workload for doctors when determining the cavity of the lesion, the model also aims to be applied in solving the problem of removing ribs on X-ray images, thereby helping to read images and diagnose disease becomes easier. In particular, in the work, the skeleton labeling dataset was opened to the community to promote related research.

Relevant posts

    Thank you for your interest.

    File hiện tại không thể tải xuống
    Vui lòng liên hệ hỗ trợ.

    VinOCR eKYC
    Chọn ảnh từ máy của bạn

    Chọn ảnh demo dưới đây hoặc tải ảnh lên từ máy của bạn

    Tải lên ảnh CMND/CCCD/Hộ chiếu,...

    your image
    Chọn ảnh khác
    Tiến hành xử lý
    Thông tin đã được xử lý
    Mức độ tin cậy: 0%
    • -
    • -
    • -
    • -
    • -
    • -
    • -
    • -
    • -
    • -
    • -
    • -
    • -
    Xác thực thông tin thẻ CMND/CCCD

    Vui lòng sử dụng giấy tờ thật. Hãy đảm bảo ảnh chụp không bị mờ hoặc bóng, thông tin hiển thị rõ ràng, dễ đọc.

    your image
    Chọn ảnh khác

    Ảnh mặt trước CMND/CCCD

    your image
    Chọn ảnh khác

    Ảnh mặt sau CMND/CCCD

    your image
    Chọn ảnh khác

    Ảnh chân dung

    This site is registered on wpml.org as a development site.